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Abstract. We use Monte Carlo techniques to study the antiferromagnetic Ising model on 
the two-dimensional Penrose lattice. Two types of interaction are included, resulting in 
subtle frustration effects and a rather complex phase diagram. 

1. Introduction 

The subject of quasi-crystals, their structure and physical properties, is an active area 
of current research. These systems are of considerable interest in themselves, but are 
also important in providing a bridge between regular periodic structures and the fully 
disordered or amorphous state. For the uninitiated, the book by Steinhardt and Ostlund 
(1989) contains most of the significant early papers on the subject as well as excellent 
summaries. 

In this paper we address the question of magnetic-order and magnetic-phase 
transitions in quasi-crystals, using as a specific system the Ising model on the two- 
dimensional Penrose lattice. In figure l ( a )  we show a portion of the Penrose lattice, 
which is a non-periodic tiling of the plane with two kinds of rhombus, a fat one with 
angles of 72" and 108" and a thin one with angles 36" and 144". Our model then has 
Ising spins (+ = i l  at all of the vertices of the Penrose lattice. 

There has been some previous related work. An important and immediate question 
is whether the model has a phase transition in the same universality class as for regular 
two-dimensional lattices. That this is indeed the case has been demonstrated for the 
ferromagnetic Ising model by Bhattacharjee et a1 (1987) and by Okabe and Niizeki 
(1988) and for the Potts model by Wilson and Vause (1988). For antiferromagnetic 
interactions frustration effects may occur and potentially new kinds of ordered states 
and transitions may exist. It is clear that if the antiferromagnetic interactions in the 
model occur only along the rhombus edges then this is a bipartitite structure, i.e. it 

- J  
J '  --- 

la 1 ( b l  
Figure 1. ( a )  The Penrose lattice. ( b )  The two interaction types J and J ' .  

0305-4470/90/204537 + 10.Y.03.50 0 1990 IOP Publishing Ltd 4537 



4538 J Oitmaa, M Aydin and M J Johnson 

can be divided into two sublattices in the same way as, for example, the square lattice. 
It will thus support a simple antiferromagnetic ordered phase and furthermore there 
is a complete correspondence between the ferromagnetic and antiferromagnetic states. 
However, if additional interactions are permitted then this will no longer be the case. 

We consider in this work a model with two kinds of interaction, both antiferromag- 
netic and  of strengths J and J ' .  This is shown in figure l ( b )  and corresponds to the 
physically reasonable assumption that significant exchange is present for the two 
smallest interatomic spacings in the structure. Our Hamiltonian is then 

where the first summation is over rhombus edges and the second is over the short 
diagonals of thin rhombi. We d o  not consider the case of a n  external magnetic field, 
which would certainly be of interest also. 

It is easy to see that frustration effects can occur in this structure. For certain ratios 
of J ' / J  some spins can become completely free, provided the remaining lattice remains 
antiferromagnetic. This is shown in figure 2, and may result in an  overall ground state 
with non-zero entropy. Furthermore it is plausible that a large number of different 
configurations may exist with energies equal to or nearly equal to the global minimum- 
a situation reminiscent of spin-glasses. Thus we might expect to find evidence for a 
complex phase space with many local energy minima, metastable states and long 
relaxation times, and perhaps the absence of a true equilibrium phase transition. Our 
motivation to study this problem was partly provided by such considerations. 

J'/J -1.5 J'IJ = 3 , O  J'IJ = 6 .0 

Figure 2. Local fully frustrated structures in an antiferromagnetic background. Spins are 
shown as 0 (up)  and 0 (down). In each case the central spin 0 is free to be either up 
or down with no change in energy. 

Our approach to the problem is via Monte Carlo simulations, as in most of the 
previous work. The Monte Carlo method has the advantage that it can provide rather 
direct evidence for the existence of complex ordered states and  for identifying true 
equilibrium states. It is able to handle non-periodic structures with no extra difficulty. 
The method is by now standard in this field but a useful source for unfamiliar readers 
is the book by Binder (1984). In the next section of the paper we will discuss some of 
the more technical aspects of our work. In section 3 we present and discuss the main 
results, and  finally in section 4 we summarize our conclusions. 

2. Technical details 

The essence of the Monte Carlo method is to generate a succession of configurations 
of the system, in a stochastic manner but one which samples states in accordance with 
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the Boltzmann distribution. Our computer program allows us to choose a starting 
configuration which is random or ordered, or to restart from the final configuration 
of a previous run. Spins can be chosen either sequentially or randomly for updating, 
and  a complete pass through the lattice, or ‘sweep’, defines the unit of ‘time’ for the 
simulation. The physical variables, such as energy and order parameters, are then 
‘measured’, i.e. computed for a sequence of time steps and thermodynamic quantities 
are obtained as averages of the resulting time-series { X , }  

1 M  

In order to reduce correlations between successive measurements, we have chosen to 
make a measurement after every ten sweeps. Individual runs are typically of length 
lo5 sweeps, with the initial measurements discarded. In some cases longer runs have 
been made. Our Monte Carlo program automatically computes, for each run, the 
average energy ( E ) ,  which is to be identified with the thermodynamic internal energy, 
the specific heat 

and  the order parameter(s), to be defined below. We also produce plots of the time 
series for the energy and for the order parameter(s). These are vital in the interpretation 
of our raw data. 

A Monte Carlo simulation is, of necessity, carried out for a finite lattice. In the 
case of periodic structures one chooses a block of unit cells and, usually, imposes 
periodic boundary conditions on the block. This is of course not possible for the 
Penrose lattice which is aperiodic. It would be possible to choose a finite piece of the 
lattice, with free boundary conditions, but the boundary spins would then experience 
a different environment and  this would seriously distort the results. We have chosen 
instead to use the so-called ‘periodic Penrose lattices’ devised by Tsunetsugu er al 
(1986). These are rhombic unit cells, containing a specific number of sites Nk, which 
can be periodically stacked to form a structure very like the true Penrose lattice. The 
Penrose matching rules are broken only at a few positions. The number of sites in the 
kth cell is given by 

Nk=4F2k+l+3FZk (4) 
where the {Fk} are Fibonacci numbers. This yields unit cells containing 1 1 ,  29, 76, 
199, 521, 1364, 3571, 9349, 24476,.  . . sites. As k + E  the unit cell approaches the 
infinite aperiodic Penrose lattice. In the work reported here we have used the 1364 
and 9349 site cells, and we believe that these are large enough to provide results 
representative of the infinite Penrose lattice. 

To explore the possible ordered phases which our system may adopt it is necessary 
to identify the different types of local structure which can occur. We identify seven 
types of site, as shown in figure 3. These d o  not all occur with equal frequency. In 
table 1 we give the numbers of each site type for the 1364, 3571 and 9349 site cells. 
We also give the limiting frequency of occurrence of each site type for the infinite 
lattice, these being simple expressions involving the golden ratio 7 = ( 1  + f i ) / 2 .  On 
the basis of these site types we can define seven order parameters 

1 
Q m = -  c U,  n = 1 , 2  , . . . ,  7. (5) No i c o  
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Figure 3. The seven distinct site types T , ,  . . . , T 7 .  These can be further distinguished if 
the larger neighbourhood is included. 

Table 1. Distribution of site types in periodic Penrose lattices with N = 1364, 3571 and 
9349 sites. The limiting frequency of occurrence of each site type in the infinite Penrose 
lattice is also given, in terms of the golden ratio T = (1  +&)/2.  

Site type 1 2 3 4 5 6 7 

N = 1 3 6 4  199 519 127 16  320 47 76 
N = 3 5 7 1  521 1363 324 199 841 125 198 
N =9349 1364 3571 843 521 2205 326 519 

T-6 -7 N = x  T - 4  T-2 7 - c  r-' F 3  
0.1459 0.3820 0.0902 0.0557 0.2361 0.0344 0.0557 

It may also be necessary to distinguish between sublattices; then we may consider the 
quantities Q$". 

3. Results and discussion 

We have carried out extensive Monte Carlo runs for various ratios of J ' / J .  On the 
basis of our results we are led to identify four separate regions: 

( a )  J ' /  J < 1.5 where the ordered phase is antiferromagnetic (AF); 
(b)  J'/J = 1 S ,  where the ordered phase is partially disordered antiferromagnetic 

( PDAF); 
( c )  1.5 < J ' / J < 2 . 0 ,  where the ordered phase is a more complex structure which 

we refer to as a partially reversed antiferromagnet ( PRAF); 

( d )  J ' / J > 2 . 0 ,  where the ordered phase appears to be of a partially disordered 
ferrimagnetic character ( PDFIM).  

Our first runs were for the region J ' / J  < 1.5. As the system is cooled, from an initial 
disordered state, it clearly undergoes a second-order transition to an antiferromagnetic 
phase in which spins on the two distinct sublattices order in opposite direction. We 
show the ground state for the antiferromagnetic phase in figure 4. The behaviour is 
reversed when the temperature is slowly increased from an initial ordered state. There 
are no  observed hysteresis effects. At J ' / J  = 0 the transition temperature is estimated 
to be T c - 2 . 4 ,  in agreement with the result of Bhattacharjee et al (1987)  for the 
ferromagnetic case. In figure 5 we show the observed variation of the specific heat and  
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Figure 4. The antiferromagnetic state ( A F )  which is the ground state for J ' / J  < 1.5. Note 
that all of the J '  bonds are frustrated. 

1 T 

Figure 5. Temperature dependence of specific heat and antiferromagnetic order parameter, 
for the 1364 site cell, for various ratios of J ' / J  as indicated. 

of the antiferromagnetic order parameter with temperature for various ratios J ' /  J. It 
should be noted that as J ' / J  increases the specific heat peak, giving an approximate 
estimate of T,, moves to lower temperatures. Furthermore the peak decreases in height 
and broadens significantly as J ' / J  increases. This behaviour is due to an increasing 
degree of frustration in the system. These results shown in figure 5 are for the 1364 
site cell. We have also carried out runs for larger cells. As expected the specific heat 
peak and order parameter variation sharpen with increasing N but there are no other 
qualitative differences. 

As the ratio J ' / J  approaches 1.5 the type 2 sites become increasingly decoupled 
from the rest of the lattice, and at J ' / J  = 1.5 are completely free provided that the 
remaining sites maintain an antiferromagnetic order. We refer to this phase, shown in 
figure 6 ( a ) ,  as a partially disordered antiferromagnetic phase ( PDAF).  This behaviour 
is borne out in the Monte Carlo simulation. In figure 7 we show the time-series for 
the order parameters Qf and Qt , corresponding to type 1 and type 2 sites on sublattice 
A, for two temperatures, one slightly above the transition and one well below the 
transition. It  is clear that the type 1 sites order at low temperatures (as do sites of all 
other types except type 2), and the order is antiferromagnetic. The type 2 sites remain 
disordered at all temperatures, and the fluctuations in Q2 are independent of tem- 
perature, as shown in figure 7. The transition at J ' / J  = 1.5 occurs at T,- 1.45 and 
appears to be second order. 

As J ' / J  increases beyond 1.5 a new type of order develops at low temperatures. 
The type 2 sites which were disordered at J ' / J  = 1.5 now order antiferromagnetically 
with their type 1 neighbours. This leads to an overall ordered phase in which the 
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la)  lb )  
Figure 6. ( a )  The partially disordered antiferromagnetic state ( P D 4 F )  which occurs for 
J ’ / J  = 1.5. All sites of type 2, shown as G, remain disordered at all temperatures while 
other sites order antiferromagnetically. ( b )  The partially-reversed antiferromagnetic state 
( PRAF) which occurs for 1.5  < J ’ /  J zs 2.0 

1 . 0 ,  

-1 0 4  I 
0 50 100 150 200 250 

Time X l O Z  

0 5  I 1  

0: 0 

0 M 100 150 200 250 
Time .lo2 

- 0  5 1  

- 1  : 
0 50 100 150 200 2 

Time 

0 5-1 

- 1  0 
0 50 100 150 200 250 

Time r l O 2  

Figure 7. Time-series for Qf and Q,”, the order parameters for type 1 and type 2 sites on 
sublattice A, for temperatures T =  1.50 (left) and T =  1.00 (right) at J ’ / J  = 1.5. 

antiferromagnetic ordering of site types 1, 3, 4, 5 ,  6, 7 remains as before with spins 
up on sublattice A and down on sublattice B, while type 2 sites are down on sublattice 
A and up on sublattice B. We refer to this phase, shown in figure 6( b ) ,  as a ‘partially 
reversed antiferromagnetic’ ( P R A F )  phase. Note that some of the J bonds are now 
frustrated. This phase appears to extend to about J’ l  J = 2.0. 
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Finally we turn to the region J ’ / J  > 2.0. The nature of the ordered phase in this 
region is not immediately obvious. For J’>>J the dominant interaction will favour 
dimers, with opposite spin at the two sites, and trimers with the central spin opposite 
to the end spins, as shown in figure 8(a) .  If J = 0 then these dimers and trimers are 
not connected and therefore no state with long-range order will exist. For J f 0 links 
between the dimers and trimers may result in an ordered phase. We believe that this 
is indeed the case, and the ordered phase has the form shown in figure 8(b) .  By 
inspection we find that in this phase all type 1 sites are up, all sites of types 2, 3, 7 
are down. Some type 4 and type 6 sites are down,, and others indeterminate, while 
some type 5 sites are up and others indeterminate. We refer to this phase as a partially 
disordered ferrimagnetic phase ( PDFIM).  The nature of the degeneracy which results 
in type 4 and 5 sites being partially disordered at all temperatures is shown in figure 8( c). 

We have looked in detail at three cases, with J ’ l  J = 5.0, 3.5 and 2.0. For J’ /  J = 5.0 
and 3.5 the qualitative behaviour is similar. There is evidence for an ordered phase, 
of the type described above, at low temperatures. There appears to be a single phase 
transition to a high-temperature disordered phase, accompanied by a somewhat broad 
peak in the specific heat. However the nature of the energy fluctuations near the 
transition temperature is quite erratic, with significant long-time instability, and it is 
difficult to determine the values of the specific heat accurately. In figure 9 we show 
the energy time-series for J ‘ / J  = 5.0 and N = 9349, for a run of 2 x lo5 sweeps. Clearly 
an estimate of C from (3)  will be liable to error if the regions near t = 1.3 x lo5 or  
1.85 x lo5 are included. It may be that the behaviour of the energy, in figure 9, is 
indicative of two co-existing phases and a first-order transition. We are inclined to the 

IC I 
Figure 8. ( a )  Dimer and trimer configurations, energetically favoure for J ’ > >  J. ( b )  The 
ordered state for J ’ > >  J (the spins shown 3 are indeterminate). ( c )  Degenerate configura- 
tions involving sites of types 4,5. 

0 w) 80 120 180 200 
Time 4 0 3  

Figure 9. Energy time-series for N = 9349 and J ’ / J  = 5.0 at temperature 7 = 1.55.  
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- 0  5 

- 1 0  

view that it is due to the existence of a large number of local minimum energy 
configurations and consequent non-equilibrium excursions, reminiscent of the 
behaviour in spin-glasses. Our prediction above, of the ordered PDFIM phase, is borne 
out by the data shown in figure 10. In this figure we show the evolution of the order 
parameters for the seven site types, Q, to Q,, for N = 9349 and J ' /  J = 5.0. Each plot 
is for a total of 2 x 10' sweeps starting from a 'high' temperature T = 1.80 and slowly 
cooling through T = 1.60, 1.55, 1.50, 1.45, 1.40 to T = 1.20. As the system is cooled 
through the transition (around T = 1.50) each order parameter evolves to a non-zero 
value, with Q,=1.0, Qz=Q3=Q7=1 .0  Q4=0.7, Qs=-0.3 and Q6=0.6. 

In figure 11 we show the specific heat for N = 9349 as a function of temperature, 
for J'/ J = 5.0,3.5,2.0. In each case there is a broad peak, which we believe corresponds 
to a phase transition between disordered and PDFIM phases. There is considerable 
uncertainty in the precise values of C near the peak, as discussed above. The ratio 

, , -1 0 
0 20 40 60 Bo loo 

Time 4 0 3  

1 0 ,  

~ 

- 0  51 

-1  01 , , 1 

0 20 40 60 Bo 100 
Time 403 

-1  0, I 

0 20 40 60 80 loo 
Time .io3 

r n  
I "  I 

- O  
- 1 0 1  , , , , 

0 20 40 60 83 100 
Time x103 

-1 0 - O  
20 40 60 80 100 0 

Time 4 0 3  

1 0 '  

- 0  51 

-1 0 
0 20 40 60 80 100 

Time .lo' 

Figure 10. Order parameters Q, , . . . , Q, for N = 9349 and J ' /  J = 5.0. The temperature is 
initially T = 1.80 and the system is slowly cooled through a sequence of intermediate 
temperature to a final temperature T = 1.20. 
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c l  
0 .L  0'5c I a l J ' / J = 2 . 0  

IblJ'/J =3.5 

0 1 [ ,  , I I , I I 

I '  08 1 0  1 2  1 4  1 6  1 8  2 0  2 2  
T 

Figure 11.  Specific heat for N = 9349 as a functlon of temperature, for J ' / J  = 2 0, 3 5 ,  5.0 

I 1 I C  

1 2 3 L 5 
J'IJ 

Figure 12. Predicted phase diagram for the model, showing the antiferromagnetic (AF), 
partially disordered antiferromagnetic ( PDAF) partially reversed antiferromagnetic ( PRAF) 
and partially disordered ferrimagnetic ( P D F I M )  phases. The solid and dashed lines are 
believed to be second- and first-order phase transition lines respectively. 

J ' l  J = 2.0 lies at, o r  very close, to the boundary between PDFIM and PRAF phases. We 
have tried to locate this boundary more precisely by carrying out Monte Carlo runs 
at fixed temperature ( T = 0.6) while varying J ' /  J slowly from 1.8 to 2.2 .  Large hysteresis 
effects are observed on  crossing this, presumably, first-order line. 

Our studies thus reveal a rather complex phase diagram, shown in figure 12, with 
at least four distinct types of ordered phase. 

4. Conclusions 

We have carried out extensive Monte Carlo simulations on the Ising model defined 
on the two-dimensional Penrose lattice with two types of antiferromagnetic interaction. 
For our simulations we have used large unit cells ('periodic Penrose lattices') with 
periodic boundary conditions, most of our results being for a cell with 9349 sites. In 
the limit these periodic cells tend to the infinite aperiodic Penrose lattice and  we believe 
that our cell is large enough to avoid spurious small-lattice effects. The presence of 
competing interactions in our model results in subtle frustration effects. We have 
identified a rather complex phase diagram with four types of ordered phases: antifer- 
romagnetic ( AF), partially-disordered antiferromagnetic ( PDAF), partially-reversed anti- 
ferromagnetic (PRAF) and partially-disordered ferrimagnetic ( P D F I M ) .  We believe that 
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these are true equilibrium phases and that the transition from each of these to the 
high-temperature disordered phase is second-order. We cannot, however, completely 
exclude the possibility that more complex types of ordering occur, either at T = 0 or 
at finite T, for some regions of J ' / J  or indeed that no true long-range order occurs in 
some regions. Certainly the very broad specific heat peak and the erratic energy 
fluctuations we have observed are warning signs. These features, and the very long 
relaxation times, are reminiscent of the behaviour of spin-glasses, with which we believe 
the model we have studied here shares common aspects. Further work is planned, 
using larger cells and also including an external magnetic field. 
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